
Modifying TCP’s Congestion Control for High Speeds

Sally Floyd, Sylvia Ratnasamy, Scott Shenker (in some order)
VERY ROUGH PRELIMINARY DRAFT!!!

May 5, 2002

1 Introduction

We are working on a modification to TCP’s window in-
crease/decrease algorithm that would allow TCP to run with
high congestion windows with realistic packet drop rates.
TCP’s sending rate is roughly

��������� 	
packets per round-trip

time, for
	

the packet loss rate on the path. This is a direct
consequence of TCP’s halving its congestion window in re-
sponse to loss, and increasing the congestion window by one
packet per round-trip time otherwise. TCP’s response func-
tion, with its average congestion window of
�� � ���
���� 	
packets, places an upper bound on achievable congestion win-
dows, given some underlying packet drop rate

	��
from cor-

ruption and/or congestion. For example, if the packet cor-
ruption rate

	��
is
���������

, this limits the average congestion
window to

� ����
��������
. (Note that, for 1500-byte packets, a

packet corruption rate of
���������

results from a bit corruption
rate of

����
�� ��� �����!��"
)

For example, for a TCP connection with 1500-byte pack-
ets and a 100 ms round-trip time, filling a 10 Gbps pipe
would require a congestion window of
 �$#�%'&�%�%�% pack-
ets, and a packet drop rate of at most one drop every ()�
 & ����� & ����� & ����� packets (because (*�+
 �!������
). This is
at most one drop per ,-�/. ����� seconds (because ,0�
(��12���
435�6
 ���!
). This is past the limits of achieveable
fiber error rates. In contrast, to fill a 100Mb pipe, the loss rate
must not exceed 1 in 500,000 packets, or equivalently, one
per ,7�8. � seconds (because ,9�:(�'1;���
43<�=
 ���!
).

It is easy to design congestion control schemes that achieve
higher sending rates at a given loss rate. However, the chal-
lenge is to do so while retaining the TCP-compatibility (or
TCP-friendliness) properties of the congestion control algo-
rithm; any new congestion control algorithm will have to co-
exist with existing TCP implementations, and the challenge
is to enable the modified congestion control algorithms to
achieve high speed while, at the same time, not unfairly steal-
ing bandwidth from unmodified TCPs. Some might argue
that fairness does not matter, and that future networks will use
QoS mechanisms and per-flow scheduling (or other forms of
router-enforced fairness). In contrast, we expect that, while
QoS mechanisms and a range of scheduling mechanisms will
likely have an important place in future networks, best-effort
traffic and FIFO scheduling will continue to have their place

also, due to their fundamental simplicity and “good enough”
performance.

To allow TCP to realistically operate at very high conges-
tion windows, we are exploring a modification to TCP so that,
once a moderately high congestion window was achieved,
TCP’s additive-increase and multiplicative-decrease param-
eters would be a function of the current window size. This
would allow TCP to achieve congestion windows of tens of
thousands of packets with realistic packet drop rates (e.g., one
in 100,0000 packets dropped), with minimal danger to the
rest of the network. This would increase the dynamic range
of a single TCP connection, while maintaining strict fairness
with current TCP implementations in the heavy and moder-
ate packet drop ranges more typical of the current Internet.
Currently, users who require very high bandwidth open up
multiple TCP connections, or use MulTCP [GRK99], which
behaves roughly like an aggregate of N virtual TCP connec-
tions. We believe that our approach offers more flexibility,
competes more fairly, and will more effectively scale to a
wide range of available bandwidths.

We note that our research is not about the specifics of
TCP itself. That is, we are not exploring TCP-specific issues
such as the number of bits needed in the header for receiver
window advertisements, but are exploring general congestion
control issues applicable to other transport protocols as well.

Moving to extremely high speeds poses special challenges
to the Active Queue Management (AQM) algorithms in
routers. We don’t propose requiring changes to routers in or-
der for our above proposals to work, but we do plan to inves-
tigate the interactions between highspeed TCP and the AQM
mechanisms at the router.

The above modification would enable flows to eventually
reach higher steady-state speeds than are attainable today, but
this modification does not address the problem of reaching
these steady-state speeds quickly. More aggressive sending,
allowing best-effort flows to start with higher initial windows,
for example, or to increase their sending rate more rapidly,
would require more feedback from the routers along the path.
We are restricting out attention to what is attainable given the
current feedback from routers along the path.

1

2 What’s the Problem?

2.1 Basics

TCP uses the following algorithm to adjust its congestion
window � : ������� �	�
���

� &������� � ����������� &
and ��� ��� � �� �! � �������� ���"���$# &
where � ,
 , and # are all defined in units of the Maximum
Segment Size (MSS). TCP uses increase parameter
 � �

,
decrease parameter � � �'��
 , and slow-start parameter #�� � .
[Jac88].

2.2 Steady-State

At steady-state, TCP’s sending rate % , measured in max-sized
packets per round-trip time (ppr), is given by [FHP00]:

%:�
& ')(� �+*-,��*� 	 �.�/� �

Using the canonical parameters, this gives the following TCP
response function [FF99]:

%=�
� ���

� 	 �.�/� &

where
	

is the per-packet drop rate, for a TCP sending an
acknowledgement packet for every data packet.

Assuming 1500-byte packets and a round-trip time 0 ������
msec, then a sending rate of % ppr is equivalent to %21����� 1 ���43 bps. For a TCP connection to maintain a sending

rate of 10 Gbps in this case, for example, TCP would require
� ���

� 	 1 ����� 1 �!� 3 � �!� �65 &

or
	87 � 1 ���'� �65 . Note that

	
represents the fraction of

packets dropped or corrupted, and not simply the bit corrup-
tion rate. This is probably past the limits of achievable fiber
error rates. For example, a packet drop/corruption rate

	
of� 1 �!��� �95 corresponds to one in every

�'��
 1 �!� �95 packets
dropped, or a packet dropped or corrupted every

� �" hours,
for our example with a 10 Gbps link and 1500-byte packets.
That is not a very dynamic congestion control algorithm if we
can only send a congestion signal every hour or two!

2.3 Ramping Up with Slow-Start

During the slow-start phase, the instantaneous throughput% 1;: 3 in ppr is given by % 1<: 3 � �>=? ppr. To reach a speed

% in ppr, it takes time
: 1 %�3 �	0 � �4@ � 1 %�3 seconds. Using the

parameters above, a TCP connection requires a window of
83,333 packets to achieve a speed of 10 Gbps, and it requires
roughly 17 round-trip times (or less than two seconds, using
the parameters above) to achieve this speed during slow-start.
This seems like an acceptably-fast ramp-up time for many
purposes.

2.4 Recovery from Consecutive Time-Outs

If the congestion window is reduced to � � �
MSS, and

the TCP sender is forced to linearly increase the congestion
window after that, then it takes
A� � round-trip times to
achieve a congestion window of
 . In this case, it would
take 83,332 round-trip times to achieve a speed of 10 Gbps,
given our parameters above. Given those parameters, this is
8,333 seconds, more than two hours.

After a single timeout occurs at congestion window
 , the
TCP sender slow-starts back up to a window of
 ��� , recov-
ering reasonably rapidly to that state. However, if a second
timeout occurs when the congestion window is one, for exam-
ple, because the retransmitted packet is itself dropped or cor-
rupted, then there is essentially no slow-start, and the sender
has to linearly increase its congestion window after that.

3 A Proposal for a Higher-Speed TCP

This section describes a proposal for a higher-speed TCP that
would be able to achieve speeds of 10 Gbps with realistic
packet drop rates.

3.1 Requirements

Performance Goals:

B Sustain high speeds without requiring unrealistically
low loss rates.

B Reach those high speeds reasonably quickly when in
slow-start.

B Recover from multiple time-outs or other periods with
small congestion windows without overly burdensome
delays.

Compatibility Goals:

B When coexisting with unmodified TCPs, the ideal goal
would be not to decrease the speed of the unmodi-
fied TCPs in any setting (meaning that the unmodified
TCP gets as much bandwidth competing against the
higher-speed TCP as it would competing against with
another unmodified TCP). This is probably a unrealis-
tically stringent goal, so that more realistic goal is that
an unmodified TCP competing with a higher-speed TCP

2

would get as much bandwidth as it would with some
low-level ambient (i.e., non-congestion) packet loss rate	 '

. That is, we say that the higher-speed TCP is no
worse, for the unmodified TCP, than a low-level ambient
packet loss rate

	 '
. If

	 '
is in the range of, say,

�'� � �
,

this seems like an acceptable compatibility goal.

B The higher-speed TCP should be incrementally deploy-
able, with no router involvement.

It is not a performance goal of our work that a transfer
should be completed in a small number of round-trip times.
Accomplishing this would seem to require explicit feedback
from all of the routers along the path, and we are not attempt-
ing this in this work. In particular, we are not considering any
start-up behaviors faster than TCP’s current slow-start behav-
ior of doubling its congestion window each round-trip time.

3.2 Basic Approach

Our approach is to start with the TCP response function

%:�
� ���

� 	 �/�.� &

to decide how we would like to modify the response function
at very low packet drop rates to achieve a 10 Gbps TCP with
realistic packet loss rates, and finally to decide how to trans-
late this response function to modified window increase and
decrease parameters
 , � , and # . Because we do not want to
more than double the congestion window in one round-trip
time, in the absence of explicit feedback from the routers, we
leave the slow-start parameter # set to one packet, as in the
current TCP.

For compatibility with existing TCPs, higher-speed TCP
uses TCP’s standard increase and decrease parameters when
the current packet drop rate

	
is greater than some value � (or,

roughly equivalently, when the current congestion window is
at most
 packets). As the default in NS, we choose � ��'� �����!

, corresponding to
)�=% � .
Next, we decide on the target packet drop rate for a con-

gestion window of
 � packets, say for
 � �:#�%'& %�%�% , corre-
sponding to a sending rate of 10 Gbps for our parameters for
the round-trip time and packet size. For example, consider a
packet drop rate of � � � ���'���

for a congestion window of

 � packets. As the default in NS, we choose
 � � #�% ����� ,
and � � � �!� ���

. This compared to the loss rate of at most���'� �65
required by standard TCP for maintaining that conges-

tion window.
Given the two points (� ,
) and (� � ,
 �) for the response

function for highspeed TCP, for
	�� � , and assuming that

we choose for the new response function to still be linear on a
log-log scale, we end up the the following response function
for highspeed TCP:

� � ����� (
	���
�� � 	
��
�� ,�� 	���
��

1

10

100

1000

10000

100000

1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

S
en

di
ng

 R
at

e
S

 (
in

 p
kt

s/
R

T
T

)

Loss Rate P

(10^-7, 83000)

(15^-3, 31)

Regular TCP (S = 1.22/p^0.5)
Highspeed TCP (S = 0.15/p^0.82)

Figure 1: New and old response functions.

for
,7� 1������
 � � �����
43 ��1������ � � � ����� � 3 �

This gives: �=� 	 � 1;� � � 3 �
 �
For example, for (� ,
) set to (0.0015, 31), and (� � ,
 �)

set to (
�!� ���

, 83000), as in Figure 1, this gives , � � �'� # � ,
for the following response function:

� �
�'� �!

	 5�� � � �

Figure 2 shows the relative fairness between highspeed TCP
and regular TCP for these values.

0

50

100

150

200

1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

H
ig

hs
pe

ed
 T

C
P

 /
R

eg
ul

ar
 T

C
P

, S
en

di
ng

 R
at

es

Loss Rate P

Relative Fairness (0.11/p^0.32)

Figure 2: Relative fairness.

We let the increase and decrease parameters
 1 ��3 and � 1 ��3
be functions of the current window size � when the conges-
tion window is larger than the default value
 packets. That
would mean that for a congestion window of
 � packets, we
would want to choose the increase and decrease parameters
 1 ��3 and � 1 ��3 to satisfy the following equation:

 � �
& ')(! , (� �+* (
 , ,��* (
 ,� � �

�.�/� �

3

Thus, we have an equation for
 1 ��3 as a function of � 1 � 3 , for� �:
 � .
In particular, we require the following:

 1 � 3 �=
 �� � � � � � � 1 ��3 ��1 � ��� 1 ��3 3 �
This would be satisfied by
 1 ��3 ��� � and � 1 ��3 � ��� �

, for
example, for (� � ,
 �) set to (

���'���
, 83000).

This would translate to a decrease of 10% after a drop, and
an increase of just under 0.1% per round-trip time in the ab-
sence of a drop or mark.

Thus, for ���/
 packets, we use TCP’s current in-
crease/decrease parameters;

 1 ��3 � ��� �4� ���

� 1 ��3 � �'��
�� ��� ���8

For an increase parameter
 1 ��3 and decrease parameter � 1 ��3 ,
we have the following response function:

� �
& ')(
 , (� � * (
 , ,��* (! ,� 	 �.�.� �

Our goal is to choose
 1 � 3 and � 1 ��3 so that the response
function gives
 ppr for a packet drop rate of

	 1
43�� � ,
and
 � ppr for a packet drop rate of

	 1
 � 3 � � � . We have
the following for the desired packet drop rate

	 1 � 3 , for �	�

 :� ��@ 1 	 1 ��323 � 1 � �4@ 1 � � 3�� ������1 � 3 3

� �4@ 1 � 3 � � �4@ 1
43� ��@ 1
 � 3 � � ��@ 1
43 �
������1 � 3 �

For the decrease parameter � 1 ��3 , we have � 1
43 � �'��

,

and � 1
 � 35�	
 . For ���
 , we let � 1 ��3 vary linearly as
the log of � , as follows:

� 1 ��3 � 1
	� �'��
 3
� ��@ 1 ��3 � � ��@ 1
43� �4@ 1
 � 3 � � ��@ 1
43 �

�'��
��

The increase parameter
 1 ��3 can then be computed using
the standard TCP equation,

 1 � 3 � �
� � ��� ��� � 1 ��3 � 	 1 � 3�'� � � � 1 � 3 &

to give the desired packet drop rate
	 1 ��3 for that window � .

However, the design space to be explored includes a range
of tradeoffs between more severe or more moderate increases
and decreases. At the most severe extreme, the constraints
between
 1 ��3 and � 1 � 3 would be satisfied by � 1 � 3 � �'��

,
for a decrease of 50% for any value of the congestion window� . And at the most moderate extreme, we could consider
 1 ��3�� �

for any value of the congestion window � , for an
increase of 1 packet per round-trip time. However, neither of
these two extremes are attractive alternatives. As a plausible
tradeoffs between overly-large and overly-small increases per

round-trip time, we let the decrease function � 1
 � 3 be 0.1, for
the large window
 � .

Other possibilities that we have not yet explored would be
to have the increase and decrease parameters
 1 ��3 and � 1 ��3
be functions of the longer-term packet drop rate, or of the
number of packets acknowledged since the last drop, as well
as depending on the current congestion window � .

4 Evaluation Strategy

We have implemented our higher-speed TCP in NS, and have
just begun the process of evaluating it for fairness, dangers
of congestion collapse, and other properties. 1 We have also
validated the fairness of HSTCP flows competing with other
highspeed flows and with regular unmodified TCP flows.

We have performed preliminary simulations examining the
transient fairness of HSTCP in the face of rapidly fluctuating
available bandwidth.

One of the fairness scenarios would be to consider a tran-
sient fairness when a new high-speed TCP starts up, in slow-
start, in an environment with existing high-speed or unmodi-
fied TCPs. A second fairness scenario would be to consider
the transient fairness when a high-speed TCP has had a low
congestion window, because of congestion downstream, and
then has to increase its congestion window in the absence of
slow-start when the downstream congestion is removed.

The initial simulations make it clear that additional work
is also needed to investigate the potential for unwelcome os-
cillations and synchronization when multiple multiple high-
speed TCPs are sharing a link.

Because our modified TCP still uses ACK-clocking, in that
the TCP data sender still requires incoming ACK packets
to clock new out-going data packets, we do not expect sig-
nificant dangers of congestion collapse, even with the more
aggressive window increase parameters at higher congestion
windows.

We hope to also have this proposal tested with real-world
experiments in the TABS project.

5 Future work

We are assuming a model where the modified TCP still is
sensitive only to the presence or absence of a mark or drop in
a window of data, and is not sensitive to the number of marks
or drops in a window of data. Future work could explore more
thoroughly the limitations imposed by this assumption.

It is also possible that this very-high-bandwidth and very-
high-congestion-window regime will raise new issues regard-
ing active queue management for this part of the design space.

1In order to avoid global synchronization from many TCP connections
having packets dropped in the same round-trip time, we changed the mini-
mum value for ��
���� in Adaptive RED from 0.01 to something smaller.

4

References

[FF99] S. Floyd and K. Fall. Promoting the use of end-to-
end congestion control in the internet. IEEE/ACM
Transactions on Networking, Aug. 1999.
URL http://www-nrg.ee.lbl.gov/floyd/end2end-
paper.html.

[FHP00] S. Floyd, M. Handley, and J. Padhye. A
comparison of equation-based and aimd
congestion control, February 2000. URL
http://www.aciri.org/tfrc/.

[GRK99] P. Gevros, F. Risso, and P. Kirstein. Analysis of a
method for differential tcp service. Dec.. 1999.

[Jac88] V. Jacobson. Congestion avoidance and control.
pages 314–329, 1988. An updated version is avail-
able via ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z.

5

