Simulator Tests

Sally Floyd*

Lawrence Berkeley Laboratory
One Cyclotron Road, Berkeley, CA 94704
floyd@ee.Ibl.gov

May 7, 1997

1 Introduction

This note shows some of theteststhat | useto verify that our
simulator is performing the way that we intend it to perform.
| have nearly ahundred short teststhat | useto verify thesim-
ulator; | run these tests after every major change to the simu-
lator. This note shows a selection of these tests. Some of the
tests would be of little interest to others, because they check
features of the simulator such as the implementation of RED
gatewayss, class-based queueing, variants of TCP with modi-
ficationsto the window increase algorithms, or non-standard
SOUrces.

| first used these tests with the old version of our simula-
tor (tcpsim), and am now (July 1995) using them to validate
our new implementation of the simulator (implemented in
C++ and in Tcl). (We are gradualy making various com-
ponents from the old simulator available on the new one.)
However, | am leaving the input filesin this document in the
format used by the old simulator.

On each page, the graph shows the results of the smula-
tion. For each graph, the x-axis shows the time in seconds.
They-axis showsthe packet number mod 90. Thereisamark
on the graph for each packet asit arrives and departsfrom the
congested gateway, and a“x” for each packet dropped by the
gateway. Some of the graphs show more that one active con-
nection. In this case, packets numbered 1 to 90 on the y-axis
belong to the first connection, packets numbered 101 to 190
on the y-axis belong to the second connection, and so on.

Below the graph is the input file for the simulator. The
first part of the input file gives the smulator parameters that
differ from the default parameters given in the standard in-
put file. The second part of the input file defines the simula-
tion network. The input file shows the edges in the network,
with the queue parameters for the output buffers for the for-
ward and/or backward direction for each link (if the output
buffer does not use the default queue, which is an unbounded
gueue). Following the convention in our new simulator, the

*This work was supported by the Director, Office of Energy Research,
Scientific Computing Staff, of the U.S. Department of Energy under Con-
tract No. DE-ACO03-76SF00098. Thisis an expanded version of a note that
was first made available in October 1994.

output buffer size includes a buffer for the packet currently
being transmitted on the output link.

The third part of the file contains a line for each active
connection, specifying the application (e.g., ftp, telnet), the
transport protocol (“tcp” for Tahoe-style TCP, “renotcp” for
Reno-style TCPR, and “satcp” for Reno-style TCP with Se-
lective Acknowledgements), and the variant of the transport
protocol used by the receiver (“sink” for a TCP receiver that
sends an ACK packet for every data packet, “dasink” for a
TCP receiver that sends delayed ACKs, and “sasink” for a
TCP receiver that sends Selective ACK's). The delayed-ACK
receiver delays sending an ACK until a second data packet
arrives, or until 100 msec.

Below the input fileis a brief description of the TCP be-
havior demonstrated in the test. Included are the commands
for running this test on our old simulator tcpsim (which is
not publically available), and on our new network simulator
ns.

2 Simulator defaults, disclaimers, and
assumptions

This simulator is not intended to reproduce the behavior of
specific implementations of TCP, and we do not use produc-
tion TCP code in our simulator. The simulator is intended
to explore the behavior inherent to the underlying conges-
tion control algorithms, including the Slow Start, Congestion
Avoidance, Fast Retransmit, and Fast Recovery algorithms.
Even with the extensive testing that we have done, | would
be surprised if the ssimulator was without bugs. Neverthe-
less, | have reasonable confidence that the simulations with
this simulator display the essential dynamics of TCP's con-
gestion control algorithms.

Several aspects of the smulator don't match the behav-
ior of actual implementations at all. For example, in the
simulator each TCP connection deals with packets, not seg-
ments. For each connection, it is possible to specify the data
and acknowledgement packet sizes in bytes, but the simula-
tor does not provide for two-way data within a single con-

nection. Thus, there is no provision for acknowledgements
piggy-backed on data packets.

Several parts of the behavior of the simulations in this
note do not match current TCP implementations. For exam-
ple, except for the few tests where a delayed ACK receiver
policy is specified, the TCP receiver acks every packet.

For these simulations, the granularity of the TCP clock
is set to 100 msec. This means that roundtrip times are mea-
sured only to the nearest 100 msec.

3 General warnings

Thetwo simulationswith phase effects are intended partly to
emphasize the dangers of interpreting an individual ssimula-
tion. Theresults of individual simulations might be sensitive
to the exact parameters used in the simulation, such as prop-
agation delays, TCP window sizes, etc. My experience is
that simulations are more reliably used to show how perfor-
mance varies as a function of a particular parameter (such
as propagation delay, TCP window size, number of connec-
tions, number of congested gateways, etc.).

4 Acknowledgements

Our old simulator tcpsim is a version of the REAL simu-

lator [K88a] built on Columbia's Nest ssimulation package
[BDSY 884], with extensive modifications and bug fixes made
by Steven McCanne and by Sugih Jamin. For the new simu-

lator ns[N¢], this has been rewritten embedded into Tcl, with

the simulation engine implemented in C++.

References

[Ns] Ns. Available via http://www-nrg.ee.lbl.gov/ng/.

[BDSY88a] Bacon, D,. Dupuy, A., Schwartz, J., and
Yemimi, Y., “Nest: a Network Simulation and Pro-
totyping Tool”, Proceedings of Winter 1988 USENIX
Conference, 1988, pp. 17-78.

[F96] Floyd, S., “Simulator Tests for Random
Early Detection (RED) Gateways’, URL
“ftp://ftp.ee.lbl .gov/papersredsims.ps.Z”, Octo-
ber 1996.

[F94] Floyd, S., “TCP and Successive Fast Retrans-
mits’, technica report, October 1994. URL
ftp://ftp.ee.lbl.gov/papers/fastretrans.ps.

[F94a] Floyd, S., “TCP and Explicit Congestion Notifi-
cation”, ACM Computer Communication Review, V.
24 N. 5, October 1994, p. 10-23. Available via
http://www-nrg.ee.lbl.gov/nrg/.

[FJ92] Foyd, S., and Jacobson, V., “On Traffic Phase Ef-
fects in Packet-Switched Gateways’, Internetwork-
ing: Research and Experience, V.3 N.3, Septem-
ber 1992, pp. 115-156. Available via http://www-
nrg.ee.lbl.gov/nrg/.

[FXO3] Floyd, S, and Jacobson, V., Random Early
Detection Gateways for Congestion Avoidance,
IEEE/ACM Transactions on Networking, V.1 N.4,
August 1993, p. 397-413. Available via http://www-
nrg.ee.lbl.gov/nrg/.

[K88a] Keshav, S., “REAL: a Network Simulator”, Report
88/472, Computer Science Department, University of
Cdliforniaat Berkeley, Berkeley, California, 1988.

5 Tahoe TCP: Slow Start, Congestion Avoidance, Fast Retransmit

oL

[e6]
=)
S8r :
©
(]
= o
N—r -
@ : H
9 H H
gof H H
= <
=
© H
4 -
[@) -
@ . H
o X. H

ol] :

N H H

of . i

| | |
1 2 3 4 5

Time

Figure 1: Fast Retransmit, Slow Start, and Congestion Avoidance algorithms, with a single packet drop.

renotcp, tcp [w ndow=14]
edge s1 to rl1 bandwi dth 8M del ay 5ns
edge r1 to k1 bandwi dth 800Kb del ay 100ns
forward [queue-size=6]
ftp conv fromtcp [start-at=1.0] at sl to sink at k1l

Thistest shows the Fast Retransmit, Slow Start, and Congestion Avoidance algorithms of Tahoe TCP. Initially, the connec-
tion increases its window using Slow-Start. The sender detects a dropped packet after receiving three duplicate ACKSs; thisis
the Fast Retransmit algorithm. The sender invokes Slow-Start, and later increases the window using the Congestion Avoidance
algorithm.

In this simulation, the congestion window is 14 packets when the first packet is dropped. After the Fast Retransmit, the
source slow-starts up to a congestion window of 7 packets, and then opens the congestion window further by roughly one packet

per roundtrip time.
This test is run on ns with “ns test-suite.tcl tahoe2”, and on tcpsim with “csh test14C.com”. Figure 14 shows the Fast

Recovery algorithm for this scenario.

sl i

[°°] : H
8 3 g H i
© = H
S ; i
< &
[} i' H
2 ¥ z H
3 Sr ;
o] H H
3 w f :

ol H

N H

°r : | | f

0 1 2 3 4 5
Time

Figure 2: Fast Retransmit, Slow Start, and Congestion Avoidance agorithms, with multiple packet drops.

tcp [wi ndow=50]
edge s1 to rl1 bandwi dth 8M del ay 5ns

edge rl1 to k1 bandwi dth 800Kb del ay 100ns
forward [queue-size=6]
ftp conv fromtcp at s1 to sink at kil

This test showsthe Fast Retransmit, Slow Start, and Congestion Avoidance algorithms of Tahoe TCP with multiple packet

drops for one window of data.
Thistest isrun on nswith “ns test-suite.tcl tahoel”, and on tcpsim with “csh testl.com”.

Packet Number (Mod 90)
40 60 80 100 120 14(
| | T |
P
>

20

2 4 6
Time

Figure 3: Retransmit timers.

renotcp, tcp [w ndow=4]
edge s1 to rl1 bandwi dth 8M del ay 5ns
edge s2 to rl1 bandwi dth 8M del ay 5ns
edge r1 to k1 bandwi dth 800Kb del ay 100ns
forward [queue-size=2]
ftp conv fromtcp [start-at=1.0] at sl to dasink at kil
ftp conv fromtcp [start-at=1.3225] at s2 to dasink at k1

Thistest showstwo connections each with amaximum window of four packets. Because of the small window coupled with
the use of delayed acks, the source will never receive three duplicate ACK s after a packet drop, and will always haveto recover

from packet drops by waiting for a retransmit timer.

For the top connection, the first packet of the connection is dropped. This shows the default value for the retransmit
timer, which in this simulation is three seconds. For the bottom connection, a packet is dropped only after several successful
measurements of the roundtrip time have been made. The tcp implementation in this simulation uses the timestamp option,

where the roundtrip time can be measured for every new ACK packet.

10

Thistest isrun on ns with “ns test-suite.tcl timers’, and on tcpsim with “csh test3.com”.

1(|)O 1?0
g
-\
—
\
L3
\
=
e
\
_

Packet Number (Mod 90)

50
I
T
—~—

Time

Figure 4: Fast Retransmit, Slow Start, and Congestion Avoidance agorithms, with multiple packet drops.

renotcp [wi ndow=100]
edge s1 to rl1 bandwi dth 8M del ay 5ns
edge s2 to rl1 bandwi dth 8M del ay 5ns
edge r1 to k1 bandwi dth 800Kb del ay 100ns
forward [queue-size=8]
ftp conv fromtcp [start-at=1.0] at sl to sink at kl
ftp conv fromtcp [start-at=0.5 wi ndow=16] at s2 to sink at k1l

This test shows Tahoe TCP with two packet drops from one window of packets. Figure 18 shows this scenario with Reno
TCPR, and Figure 21 shows Reno TCP with Selective Acknowledgements.
Thistest isrun on ns with “ns test-suite.tcl tahoe3”, and on tcpsim with “ csh test15C.com”.

i J
X g

ol O

@© xXa ¢
3 &
-
(@] -
=3 ea
o F
=
ey
k] b
X H
Q -
© H
o ¥

ol - g

N -

- g X
- : Xa
°r | | | | | X" | |
1.0 15 2.0 2.5 3.0 35 4.

Time

Figure 5: Delayed-ACK sink.

renotcp, tcp [w ndow=50]
edge s1 to rl1 bandwi dth 8M del ay 5ns
edge rl1 to k1 bandwi dth 800Kb del ay 100ns
forward [queue-size=6]
ftp conv fromtcp [start-at=1.0] at sl to dasink at kil

Thistest showsthe delayed-ACK sink. The ACK for the first packet is delayed by 100 msec. The second and third packets
are acknowledged by a single ACK, and therefore the window is increased by only one packet, from two to three. When the
single ACK arrivesfor packets 4 and 5, the window is again increased to four. The source gets to send three packets. When the
delayed ACK arrivesfor packet 6, the window is increased again to five, allowing the source to send two more packets.

Thistest isrun on ns with “ns test-suite.tcl delayed”, and on tcpsim with “csh test7.com”.

100 150 200 25C
T I I I
L
L

Packet Number (Mod 90)

50
T

Time

Figure 6: Telnet connections.

edge s1 to rl1 bandwi dth 8My del ay 5ns
edge s2 to rl1 bandwi dth 8M del ay 5ns
edge rl1 to k1 bandwi dth 800Kb del ay 100ns

forward [queue-size=6]
telnet [interval =1100nms] conv fromtcp at sl to sink at k1l
telnet [interval =0] conv fromtcp at s2 to sink at k1l
telnet [interval =0] conv fromtcp at s2 to sink at k1l

Thistest showsvarioustelnet sources. Thefirst telnet connection generates fixed-size packets with interpacket timesfrom an
exponential distribution with amean of 1.1 seconds. The second and third telnet connections generate packets with interpacket
times from the tcplib distribution. Thistest will give quite different results for different seeds for the pseudo-random number
generator.

Thistest isrun on nswith “ ns test-suite.tcl telnet”, and on tcpsim with “csh test10.com”.

' ..II
. i,
3] 1 ...Ii
1)ﬁl_

-é , "‘- '-l.'
P .-', L J--' ."i
g -
2 1111
g
8

i | |

il

I

| | \ \ \
5 10 15 20 25

Time

Figure 7: Phase effects.

renotcp, tcp [w ndow=32]
edge s1 to rl1 bandwi dth 8M del ay 5ns
edge s2 to rl1 bandwi dth 8M del ay 3ns
edge r1 to k1 bandwi dth 800Kb del ay 100ns
forward [queue-size=16 |
ftp conv fromtcp [start-at=5.0] at sl to sink at kl
ftp conv fromtcp [start-at=1.0] at s2 to sink at k1l

Thistest showsasimulation of two TCP connections, with dightly different propagation delays on the two incoming edges.
Note that the top connection, from source s2, receives a disproportionate share of the packet drops. Thisis due to phase effects
[FJ92]. These phase effects remain with Reno TCP sources and with delayed-ACK sinks.

Thistest isrun on nswith “ns test-suite.tcl phase”, and on tcpsim with “csh test20.com”.

! 1 1

ol 1 l' II

!
5 - |
‘” |
8) l 1
= |, I j I' ll'
5o e
£
3
z | |
g
Q
®
ol

|

@]

' l
.I' |'

5 10 15 20 25
Time

Figure 8: Phase effects, with random overhead.

renotcp, tcp [w ndow=32]
edge s1 to rl1 bandwi dth 8M del ay 5ns
edge s2 to rl1 bandwi dth 8M del ay 3ns
edge r1 to k1 bandwi dth 800Kb del ay 100ns
forward [queue-size=16 |
ftp conv fromtcp [start-at=5.0 overhead=10nms] at sl to sink at k1l
ftp conv fromtcp [start-at=1.0 overhead=10ns] at s2 to sink at k1l

This test shows a simulation of two TCP connections identical to that in Figure 7, except that each TCP connection uses a
random overhead of up to 10ms (the transmission delay at the bottleneck gateway) at the source to add a random delay to the
processing time for each incoming ACK packet. The purpose of this random delay is to add a sufficient random factor to the
simulations to prevent phase effects [FJ92].

Thistest isrun on nswith “ ns test-suite.tcl phase2”.

10

100 150
[[
--

e ————

Packet Number (Mod 90)

5|O
—m§(
S

Time

Figure 9: Phase effects simulation, with changed propagation delays.

renotcp, tcp [w ndow=32]
edge s1 to rl1 bandwi dth 8M del ay 5ns
edge s2 to rl1 bandwi dth 8M del ay 9. 5ns
edge r1 to k1 bandwi dth 800Kb del ay 100ns
forward [queue-size=16 |
ftp conv fromtcp [start-at=5.0] at sl to sink at kl
ftp conv fromtcp [start-at=1.0] at s2 to sink at k1l

This test shows a simulation of two TCP connections, with a dightly different propagation delay on one of the links,
compared to the test in Figure 7. Note that the bottom connection receives a disproportionate share of the packet drops.
Thistest isrun on nswith “ns test-suite.tcl phasel”, and on tcpsim with “ csh test24.com”.

11

L AL
lf” // '

o)

N W) /
gg_.-', II / l,
A iraira
S |

o[g | ',

o HE e L

Figure 10: Connections with different roundtrip times.

tcp [wi ndow=30]

bg [dropnmech=random drop]

edge r1 to k1 bandwi dth 800Kb del ay 100ns
forward [queue-size=11]

edge s1 to rl1 bandwi dth 8My del ay 5ns

edge s2 to rl1 bandwi dth 8Mb del ay 200ns

ftp conv fromtcp at sl to sink at kil

ftp conv fromtcp at s2 to sink at kil

This test shows two Tahoe TCP connections where top connection (from source s2) has a roundtrip time roughly three
times that of the bottom connection. The shared gateway uses Random Drop. Because of TCP's window increase algorithms,
the connection with the shorter roundtrip time increases its window faster, and receives a disproportionate share of the link
bandwidth

Thistest isrun on nswith “ns test-suite.tcl tahoe4”, and on tcpsim with “ csh test32.com”.

12

l”
gi : ;) ! ! !
f! AN
5 |
8o |'”
23 '
: S
£
/.
/
[} '”
o- . ! ,’ ’ '/
1 é 3 : ; ;
Time

Figure 11: Multiple fast retransmits.

tcp [wi ndow=50]
edge rl1 to k1 bandwi dth 1.5M del ay 100ns
forward [queue-size=23]
edge s1 to rl1 bandwi dth 10Mb del ay 3ns
edge s2 to rl1 bandwi dth 10Mb del ay 5ns
ftp conv fromtcp [start-at=1.0] at sl to sink at kl
ftp conv fromtcp [start-at=1.8 stop-at-packet=100] at s2 to sink at kil

This test shows the pathological behavior of Tahoe TCP when there are multiple fast retransmits that result from losses in
one window of data. By varying the start time of the second TCP connection, it is possible to completely change the nature of

the pathological behavior.
Thistest isrun on nswith “nstest-suite.tcl bug”, and on tcpsim with “ csh test100.com”. Figure 12 shows the same scenario

with the ssimplefix to the TCP code that is described in [F94].

13

150
I
L LT
—
e

Packet Number (Mod 90)
100
|

5|0
B

Time
Figure 12: TCP with a bug-fix that prevents multiple fast retransmits.

Thistest isrun on ns with “ns test-suite.tcl no_bug”, and on tcpsim with “csh test100.com”.

14

6 Reno TCP: Fast Recovery

ol - " v
g
/ /
/ /
n_m / /
ol -/
!’ e
o .. v ¥ v /
Sl I | | | |

Time

Figure 13: Fast Recovery, with asingle packet drop.

renotcp, tcp [w ndow=28]
edge s1 to rl1 bandwi dth 8M del ay 5ns
edge r1 to k1 bandwi dth 800Kb del ay 100ns
forward [queue-size=8]
ftp conv fromrenotcp [start-at=1.0] at s1 to sink at kil
ftp conv [maxpkts=7] fromrenotcp [start-at=1.2] at sl to sink at k1l
ftp conv [maxpkts=7] fromrenotcp [start-at=1.2] at sl to sink at k1l

This test shows the Fast Recovery algorithm with a single packet drop. The bottom row shows the packets from the first
connection, the middle row shows the packets from the second connection, and the top row shows the packets from the third
connection. The second and third connectionsare added only to get the desired packet drop pattern from the bottom connection.

Thistest isrun on ns with “ns test-suite.tcl renoA”.

15

7 Reno TCP: Fast Recovery

ol
®©
s o
S 3 H
k]
o
= g
N—r -
@
o
Eol
= <
-
[T}
X -
[] H
© .n
o Xy
ol
N H -
O = g H
| | | | |
1 2 3 4 5

Time

Figure 14: Fast Recovery, with asingle packet drop, and different valuesfor the receiver's adverti sed window and the maximum
congestion window.

renotcp, tcp [nmaxcwnd=14 w ndow=28]
edge s1 to rl1 bandwi dth 8M del ay 5ns
edge r1 to k1 bandw dth 800Kb del ay 100ns
forward [queue-size=6]
ftp conv fromrenotcp [start-at=1.0] at s1 to sink at kil

Thistest shows the Fast Recovery algorithm with a single packet drop. Figure 14 and Figure 1 differ in that Figure 14 uses
Reno-style TCP while Figure 1 uses Tahoe-style TCP.

In order to show easily simulate a range of scenarios, and to get the best possible behavior of the Reno congestion control
algorithms, this simulation runs with the receiver's advertised window of 28, but with a maximum congestion window of 14.
This separation between the receiver's advertised window, intended to prevent the receiver's buffer from overflowing, and the
maximum congestion window, intended to limit the number of packets outstanding in the pipe, allows us to easily simulate a
range of scenarios, without the sender being unnecessarily limited by the receiver's advertised window during Fast Recovery. In
actual TCPimplementations using the Reno algorithm, the sender' s maximum congestion window is always set to the receiver's
advertised window.

Thistest is run on nswith “ns test-suite.tcl reno”, and tcpsim with “csh test14B.com”. This test with selective acksis run
on nswith “nstest-suite-sack.tcl sack1”.

16

w| i
o H
S o H
> S g
e
(@]
=3 :
S <L H
zZo :
- §
X .
S i
@ L
o X
o i
© H
ol . :
oL | \ \ | |
1 2 3 4 5
Time

Figure 15: Fast Recovery, with asingle packet drop.

renotcp, tcp [nmaxcwnd=14 w ndow=14]
edge s1 to rl1 bandwi dth 8My del ay 5ns
edge r1 to k1 bandw dth 800Kb del ay 100ns
forward [queue-size=6]
ftp conv fromrenotcp [start-at=1.0] at sl1 to sink at kil

This test shows the Fast Recovery agorithm with a single packet drop, with both the receiver's advertised window and the
maximum congestion window set to 14. Figure 15 and Figure 1 differ only in that Figure 14 uses Reno-style TCP while Figure
1 uses Tahoe-style TCP. Unlike the previous two figures showing Fast Recovery, in this figure the sender is unable to send new
packets between the initiation of Fast Retransmit, and the receipt of the acknowledgement for the retransmitted packet, due to
the limitations imposed by the receiver's advertised window. Instead, the sender sends an entire window of packets when the
acknowledgment for the retransmitted packet arrives.

17

r , /]
/ [
/
0 I, l
_ | N /
§ £t .,l' I’I /
fgg_..'” A
£ .
% t’ II'
g I I
L I
° - I
!
/
/ /!
O._.-" ! .-’f
) 2 7 ; 5 10

Time

Figure 16: Fast Recovery, with multiple packet drops.

renotcp, tcp [w ndow=50 bug-fix=fal se]
edge s1 to rl1 bandwi dth 8M del ay 5ns
edge s2 to rl1 bandwi dth 8M del ay 5ns
edge r1 to k1 bandwi dth 800Kb del ay 100ns
forward [queue-size=9]
ftp conv fromrenotcp [start-at=1.0] at s1 to sink at kil
ftp conv fromrenotcp [start-at=1.0 wi ndow=20] at s2 to sink at k1l

This test shows the Fast Recovery algorithm in Reno TCP, with multiple packet drops from one window of packets. TCP
hasto wait for a retransmit timer to recover.
Thistest isrun on nswith “ns test-suite.tcl reno5”.

18

1.5
I
——
.
\

1.0
I
-
]
b
L
S

Packet Number (Mod 90)

O|5
=

Time

Figure 17: Fast Recovery, with multiple packet drops.

renotcp, tcp [w ndow=50 bug-fix=true]
edge s1 to rl1 bandwi dth 8My del ay 5ns
edge s2 to rl1 bandwi dth 8My del ay 5ns
edge r1 to k1 bandw dth 800Kb del ay 100ns
forward [queue-size=9]
ftp conv fromrenotcp [start-at=1.0] at sl1 to sink at kil
ftp conv fromrenotcp [start-at=1.0 wi ndow=20] at s2 to sink at k1l

Thistest is identical to that in Figure 16, except that the TCP sources are modified to implement a bug-fix that prevents
unnecessary fast-retransmits following a retransmit timeout.
Thistest isrun on nswith “ ns test-suite.tcl reno2”.

19

100 150
T I
S
-_-‘
\
\

Packet Number (Mod 90)

50
I
o

Time

Figure 18: Fast Recovery, with multiple packet drops.

renotcp [wi ndow=100]
edge s1 to rl1 bandwi dth 8My del ay 5ns
edge s2 to rl1 bandwi dth 8My del ay 5ns
edge r1 to k1 bandw dth 800Kb del ay 100ns
forward [queue-size=8]
ftp conv fromrenotcp [start-at=1.0] at sl1 to sink at kil
ftp conv fromrenotcp [start-at=0.5 wi ndow=16] at s2 to sink at k1l

Thistest showsthe Fast Recovery algorithmin Reno TCP, with multiple packet drops from onewindow of packets. Thistest
was intentionally designed to highlight the weakness of Reno TCP with multiple packet dropsin one window of data. Figure 4
shows Tahoe TCP in the same scenario, and Figure 21 shows TCP with Selective ACKs.

For the Reno TCP connection in the bottom row, packets 5 and 7 are dropped, and the receiver sends three duplicate ACKs
when it receives packet 6, 8, and 9. The source receives the three duplicate ACK 'S, and uses fast retransmit to retransmit packet
5. When the source receives an ACK acknowledging up to and including packet 6, TCP has to wait for a retransmit timer to
recover.

Thistest isrun on nswith *ns test-suite.tcl reno3”, and on tcpsim with “csh test15B.com”.

20

0.6

Packet Number (Mod 90)
0.4 .

0.2

0.0

0.5

|
1.0
Time

15

2.0

0.0

Figure 19: Fast Recovery, with two packet drops.

renotcp [wi ndow=40]
edge s1 to rl1 bandwi dth 10Mb del ay 2ns
edge rl1 to r2 bandwidth 1.5M del ay 20ns
forward [queue-size=29]
ftp conv fromrenotcp [start-at=1.0] at s1 to dasink at r2
Thistest shows the Fast Recovery algorithm in Reno TCP with two packet drops from one window of packets, in a scenario
where the Reno agorithm recovers from the two drops in one window of data without having to wait for a retransmit timer.
Thistest shows that although Reno is sometimes capable of recovering from two packet drops without waiting for a retransmit
timer to expire, thisrecovery is often accompanied by a burst of packets transmitted back-to-back from the source.
Two packets, packets 88 and 112, were dropped on the link from "r1” to "r2". This trace shows packets transmitted on
the link from "s1” to "r1”, and does not show packet drops for another link. When the acknowledgement for the first dropped

packet is received, followed by three dup acks, the source does a second fast retransmit, retransmitting the second dropped
packet. When the acknowledgement for the second dropped packet is received, the acknowledgement acknowledgesall packets

that have been transmitted so far, and the source transmits a window of packets back-to-back.
Thistest isrun on nswith “ns test-suite.tcl renoda’.

21

o {
°© ¢] :
5o ; i
® gl r i §
ze d : !
o : . !
3 : ! 4
o ; § .
£ : ! ; :
5 L H : d !
z 0 ; { H ;
o :’ : 4 :
x l. l. l. :
0 H g d :
® : d : :
o 1 1 1 !
| i i . H ;
o i i ; H
oL . f : { :=l .’:
Ol | | | | |
05 1.0 15 2.0
Time

0.0
Figure 20: Fast Recovery, with two packet drops, and different values for the receiver's advertised window and the maximum

congestion window.

renotcp [maxcwnd=40 wi ndow=80]
edge s1 to rl1 bandwi dth 10Mb del ay 2ns
r2

edge rl1 to r2 bandwidth 1.5M del ay 20ns
forward [queue-size=29]

ftp conv fromrenotcp [start-at=1.0] at sl to dasink at
Thistest differsfrom Figure 19 only in that, in thistest, the sender limitsitself to a maximum congestion window of 40, but

assumes areceiver's advertised window of 80. This shows that the sender sends a burst of packets even in a scenario where the

sender is not limited by the receiver's advertised window.
Thistest isrun on nswith “ ns test-suite.tcl reno4”.

22

8 Reno TCP with Selective Acknowledgements

1|5

--'--.

\
\

1.0
~——
‘I
_
\
=
\

Packet Number (Mod 90)

0.5
S
[

0.0
I
-

Time

Figure 21: Fast Recovery with Selective Acknowledgements, two packets dropped in a single window.

satcp [wi ndow=100]
edge s1 to rl1 bandwi dth 8M del ay 5ns
edge s2 to rl1 bandwi dth 8M del ay 5ns
edge r1 to k1 bandwi dth 800Kb del ay 100ns
forward [queue-size=8]
ftp conv fromsatcp [start-at=1.0] at sl to sasink at kil
ftp conv fromsatcp [start-at=0.5 wi ndow=16] at s2 to sasink at kl

This test shows the Fast Recovery algorithm in TCP with Selective Acknowledgements. This simulation with Tahoe TCP
isshown in Figure 4, and the simulation with Reno TCP is shown in Figure 18.
Thistest isrun on tcpsim with “csh test15D.com” and on ns with “ns test-suite-sack.tcl sack3”.

23

ol ;
© ;
g8- ¢
© -
g F
g i H
(] ;5- =
Qo){.
E o i:
2 S0 i
3] =
E)>§ . H
ol .
N a H
°r i | : \ | |
1.0 1.5 2.0 2.5 3.0 35 4.0
Time

Figure 22: Fast Recovery with Selective Acknowledgements

renotcp, tcp, satcp [wi ndow=28]
edge s1 to rl1 bandwi dth 8M del ay 5ns
edge rl1 to k1 bandwi dth 800Kb del ay 100ns
forward [queue-size=6]
ftp conv fromsatcp [start-at=1.0] at sl1 to sasink at kil

Thistest shows the Fast Recovery algorithm with Selective ACKS, with a moderate number of packet drops.

The Selective ACK packets in our simulator are not limited to a particular size. Our simulator has a parameter that de-
termines the number of "holes’ that can be reported in the Selective ACK packet; for this simulation that parameter is set to
10.

Thistest isrun on tcpsim with “csh test14.com”.

24

9 Random Drop gateways

ol H
[e6]
S 8
k=] =
e) = -
3 f H
Q . . H
Eg* *(: : . :
4 - -
[@) an " -
© i - H
a £ f f
ol H
N H H
o = ’
| | \ | |
0 1 2 3 4
Time

Figure 23: Random Drop gateways.

renotcp, tcp [w ndow=50]

bg [dropnmech=random drop]

edge s1 to rl1 bandwi dth 8M del ay 5ns

edge r1 to k1 bandw dth 800Kb del ay 100ns
forward [queue-size=6]

ftp conv fromtcp at sl1 to sink at kil

Thistest shows a Random Drop gateway. With a Drop Tail gateway with the same scenario, the gateway drops every other
packet of the slow-starting connection during times of congestion. This test differs from that in Figure 2 only in that in this
test, the gateway uses a Random Drop rather than a Drop Tail packet dropping discipline. For a Random Drop gateway, when
apacket arrives to afull queue, the gateway randomly chooses a packet to drop from the arriving packets and those already in

the queue.

10 RED (Random Early Detection) Gateways

Simulations tests with Random Early Detection Gateways are shown in a separate document [F96].

25

