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Why look at non-TCP congestion control mechanisms?

e The congestion control mechanisms in TCP are well-suited for applica-
tions such as file transfer:

— with the goal of transferring a file in the shortest possible time;

— given the restrictions of fairness and the avoidance of congestion col-
lapse.

e Some applications would prefer to avoid TCP’s characteristic halving
of the congestion window:
— and would be willing to pay the price of a longer transfer time.

e Not considered:
Applications exempt from end-to-end congestion control.



“andidates for TCP-compatible but slowly-responding congestion control:

e Equation-based congestion control
— For example, TFRC (TCP-Friendly Rate Control).

e TCP based on AIMD (Additive-Increase, Multiplicative-Decrease)
— With appropriate increase and decrease parameters a and b.

e Modified variants of TCP (e.g., rate-based).
e Binomial congestion control algorithms that are extensions of AIMD.

e And a number of others...



Equation-based congestion control: TFRC

e Uses TCP’s equation for the acceptable sending rate as a function of the
loss rate and RTT.

e The receiver estimates the loss event rate over the most recent eight
loss intervals.

e We believe that TFRC is a viable congestion control scheme for many
streaming media applications (many of which don’t currently use end-to-
end congestion control).
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AIMD(a, b):

e The deterministic steady-state model:
W W
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Time
AIMD congestion window in steady-state.
e Decrease window from W to (1 — b)W.

e Increase window from W to W + a packets each roundtrip time.



AIMD(a, b), continued:

e The average sending rate S'is (1 — b/2)W packets per RTT.

e Each cycle has one drop in about Xm S W2 packets.

e Therefore, W =~ @Gmwgsﬁ_ and S ~ ,\%.

e For TCP, S =~ /1.5/p.

— S0 AIMD(a, b) should compete fairly with AIMD(1, 1/2), in the deter-

ministic model, if a = 5> 3b o
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TCP(1/5, 1/8), or TCP(2/5, 1/8)?

e The previous slide suggests that TCP(1/5, 1/8) should be TCP-compatible,
but actually, TCP(2/5, 1/8) looks better in simulations:
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Comparing Aggressiveness and Responsiveness:

e Aggressiveness:
Max increase in sending rate (in packets/RTT) in one RTT.

— AIMD(a, b) or TCP(a, b): a
— TFRC: 0.14—-0.28 packets

e Responsiveness:
RTTs of sustained congestion for halving the sending rate.

— AIMD(a, b): 10g1_4 0.5
— TCP(a, b): in heavy congestion, ack-clocking and retransmit timeouts

give quick reductions in the sending rate
— TFRC: 5 RTTs



Aggressiveness (Increase)

Comparing Aggressiveness and Responsiveness, cont.:

TFRC

TFRC with history discounting
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Comparing Smoothness and Responsiveness:

e Smoothness:

Largest reduction of sending rate in one RTT, in the deterministic model.
— TCP(a, b): 1 — b
— TFRC: 1
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Smoothness (Decrease)

Comparing Smoothness and Responsiveness, etc.:
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Simulation with TCP[2/5, 1/8] (top) and TCP (bottom)
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Throughput (KB/0.2 sec)

Throughput (KB/0.2 sec)
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Simulation with TFRC (top) and TCP (bottom)

flow o._ 0.2 sec c_:_m —_—
1 sec bins ------- i
drops +

S S S I S T B | 4+ + + | + b + 1+ 4t 4 T

18 20 22 24 26 28 30

= S S R s

flow H._ 0.2 sec U_:_m —_—
1 sec bins ------- i
drops +

e e E 1 X [ T S S o S o Sl I 47

16

18 20 22 24 26 28 30

14



Measuring the throughput ratio

e T;: the sending rate for a flow over the :-th time interval.

T;
T; 1

e Throughput ratio for the :-th interval:

e For a flow, we look at the distribution of throughput ratios, for 0.2-second,
1-second, and 10-second time intervals.
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TFRC

The cumulative distribution of throughput ratios
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Summary:
Why are we bothering with TFRC, instead of using TCP(2/5, 1/8)?

e TFRC gives a smoother sending rate than TCP(2/5, 1/8).

e TFRC uses less traffic on the return path than TCP:
— TFRC uses a feedback message once per RTT.
— TCP uses ACK packets.

e TFRC is a promising building block for multicast congestion control.

— Receiver-based.

— Sender slowly adjusts its sending rate based on feedback from re-
ceivers.
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Exploring additional differences
between memoryless and memory-based congestion control

e Memory-based congestion control:
— Equation-based congestion control, such as TFRC, with its memory
of past loss intervals.

e Memoryless congestion control:

— TCP, which responds to the presence or absence of congestion in the
most recent RTT.

— During a slow-start, TCP’s slow-start threshold ssthresh retains some
minimal memory of the previous congestion window.
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Simulations of TFRC (top) and TCP(2/5, 1/8) (bottom),
with packet bursts perfectly adapted to TFRC’s memory
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Simulations of TFRC (top) and TCP(2/5, 1/8) (bottom),

with packet bursts *not* perfectly adapted to TFRC’s memory
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Concerns about Slow Congestion Control (SlowCC):

A report on work in progress with Deepak Bansal,
Hari Balakrishnan, and Scott Shenker.

For this talk, SlowCC refers only to TCP(2/5, 1/8) or to TFRC.
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Concerns about Slow Congestion Control (SlowCC):

e (1) Less aggressive: SlowCC'’s limited ability to take advantage of an
increase in the available bandwidth.

e (2) Less responsive: Is there an extended period of transient conges-
tion, with high packet drop rates, after a sharp decrease in the available
bandwidth?

e (3) Fairness with TCP in a changing environment:
— Long-term fairness with TCP?
— Transient fairness with TCP?
— Fairness to competing TCP web mice?
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Aggressiveness: SlowCC'’s limited ability to take advantage
of increases in the available bandwidth

e Assume that the bandwidth available to a flow is doubled.
e For TCP(a,b), the sending rate is increased by:
— a/ R packets/sec each RTT,

— a/R? packets/sec each second.

e Therefore, for TCP(a,b) in congestion avoidance with a sending rate of
)\ pkts/sec, it takes AR?/a seconds to double its sending rate.

e This “cost” of SlowCC cannot be improved by standard scheduling or
gueue management mechanisms at the routers.
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Responsiveness: SIowCC’s slow decrease in response to congestion

e In mild but persistent congestion (e.g., with ECN), TCP(a, b) decreases
its sending rate by a multiplicative factor (1 — b) each RTT.

e In severe congestion, TCP(a, b) decreases quickly, as a result of both
ack-clocking and retransmit timeouts.

e For equation-based congestion control, the decrease rate is determined
by the method for estimating the loss event rate.

e For TFRC, which averages over a number of loss intervals, the decrease
rate is determined by the number of loss intervals in the average (8).

— For heavy congestion, TFRC’s “ack-clocking-emulation” is the domi-
nant mechanism determining the decrease rate.
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Next: fairness results

e Long-term fairness with TCP in a changing environment?
e Transient fairness with TCP in a changing environment?
e Fairness to competing TCP web mice in a changing environment?

Summary: We could find no fairness reasons for not deploying SlowCC
(that is, TCP(2/5, 1/8) or TFRC) in the current Internet.
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SlowCC'’s long-term fairness with TCP in changing environments:

Square Wave Bandwidth (Competing TCP and TFRC Flows)
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Simulations of TCP competing with TFRC.
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SlowCC'’s long-term fairness with TCP in changing environments:

Square Wave Bandwidth (Competing TCP and TCP(1/8) Flows)
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Simulations of TCP competing with TCP(2/5, 1/8).

27



Transient fairness with TCP in a changing environment:

e After a sudden doubling in the available bandwidth, TCP initially gets
more than its share of the available bandwidth, when competing with
TFRC or TCP(2/5, 1/8).

e When the available bandwidth returns to its initial value, the return to
fairness is fairly prompt.
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Fairness to competing TCP web mice in a changing environment:
Results from current simulations

e TCP web mice competing with TFRC or TCP(2/5, 1/8) do no worse than
web mice competing with TCP.

e TCP flows starting up against an existing TFRC or TCP(2/5, 1/8) flow
quickly achieve their share of the link bandwidth.
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Related work in progress:

e What about *very* slow congestion control, e.g., TCP(a, 1/256), or TFRC
with a loss event rate measured over 256 loss intervals instead of 8?

— These *very* slow congestion control mechanisms have significant

costs in terms of transient fairness, and in terms of slowness in taking
advantage of newly-available bandwidth.
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