A Comparison of Equation-Based and AIMD Congestion Control

Sally Floyd, Mark Handley, and Jitendra Padhye

Workshop on the Modeling of Congestion Control Algorithms Sept. 4-6, 2000 Paris

Why look at non-TCP congestion control mechanisms?

- tions such as file transfer: The congestion control mechanisms in TCP are well-suited for applica-
- with the goal of transferring a file in the shortest possible time;
- lapse. given the restrictions of fairness and the avoidance of congestion col-
- of the congestion window: Some applications would prefer to avoid TCP's characteristic halving
- and would be willing to pay the price of a longer transfer time.
- Not considered:

Applications exempt from end-to-end congestion control.

Candidates for TCP-compatible but slowly-responding congestion control:

- Equation-based congestion control
- For example, TFRC (TCP-Friendly Rate Control).
- TCP based on AIMD (Additive-Increase, Multiplicative-Decrease)
- With appropriate increase and decrease parameters a and b.
- Modified variants of TCP (e.g., rate-based).
- Binomial congestion control algorithms that are extensions of AIMD.
- And a number of others...

Equation-based congestion control: TFRC

- loss rate and RTT. Uses TCP's equation for the acceptable sending rate as a function of the
- loss intervals The receiver estimates the loss event rate over the most recent eight
- streaming media applications (many of which don't currently use end-toend congestion control). We believe that TFRC is a viable congestion control scheme for many

throughput (KByte/s)

AIMD(a, b):

The deterministic steady-state model:

Window

Time

AIMD congestion window in steady-state.

- Decrease window from W to (1-b)W.
- Increase window from W to W+a packets each roundtrip time.

AIMD(a, b), continued:

- The average sending rate S is (1-b/2)W packets per RTT.
- Each cycle has one drop in about $\frac{b(2-b)}{2a}W^2$ packets.
- Therefore, $W pprox \sqrt{\frac{2a}{b(2-b)p}}$, and $S pprox \sqrt{\frac{(2-b)a}{2bp}}$
- ullet For TCP, $Spprox\sqrt{1.5/p}$.
- ministic model, if $a = \frac{3b}{(2-b)}$. So AIMD(a, b) should compete fairly with AIMD(1, 1/2), in the deter-

TCP(1/5, 1/8), or TCP(2/5, 1/8)?

but actually, TCP(2/5, 1/8) looks better in simulations: The previous slide suggests that TCP(1/5, 1/8) should be TCP-compatible,

Comparing Aggressiveness and Responsiveness:

Aggressiveness:

Max increase in sending rate (in packets/RTT) in one RTT.

- AIMD(a, b) or TCP(a, b): a
- TFRC: 0.14—0.28 packets
- Responsiveness:

RTTs of sustained congestion for halving the sending rate.

- AIMD(a, b): $\log_{1-b} 0.5$
- give quick reductions in the sending rate $\mathsf{TCP}(a,\,b)$: in heavy congestion, ack-clocking and retransmit timeouts
- TFRC: 5 RTTs

Aggressiveness (Increase)

Comparing Aggressiveness and Responsiveness, cont.:

Comparing Smoothness and Responsiveness:

Smoothness:

Largest reduction of sending rate in one RTT, in the deterministic model.

- TCP(a, b): 1 - b

TFRC: 1

Smoothness (Decrease)

Comparing Smoothness and Responsiveness, etc.:

Simulation with TFRC (top) and TCP (bottom)

Measuring the throughput ratio

- T_i : the sending rate for a flow over the i-th time interval.
- ullet Throughput ratio for the i-th interval: $rac{T_i}{T_{i-1}}$
- 1-second, and 10-second time intervals. For a flow, we look at the distribution of throughput ratios, for 0.2-second,

TFRC

The cumulative distribution of throughput ratios

Summary:

Why are we bothering with TFRC, instead of using TCP(2/5, 1/8)?

- TFRC gives a smoother sending rate than TCP(2/5, 1/8).
- TFRC uses less traffic on the return path than TCP:
- TFRC uses a feedback message once per RTT.
- TCP uses ACK packets.
- TFRC is a promising building block for multicast congestion control.
- Receiver-based.
- ceivers Sender slowly adjusts its sending rate based on feedback from re-

between memoryless and memory-based congestion control Exploring additional differences

- Memory-based congestion control:
- of past loss intervals Equation-based congestion control, such as TFRC, with its memory
- Memoryless congestion control:
- most recent RTT. TCP, which responds to the presence or absence of congestion in the
- minimal memory of the previous congestion window. During a slow-start, TCP's slow-start threshold ssthresh retains some

with packet bursts perfectly adapted to TFRC's memory Simulations of TFRC (top) and TCP(2/5, 1/8) (bottom),

with packet bursts *not* perfectly adapted to TFRC's memory Simulations of TFRC (top) and TCP(2/5, 1/8) (bottom),

Concerns about Slow Congestion Control (SlowCC):

Hari Balakrishnan, and Scott Shenker. A report on work in progress with Deepak Bansal,

For this talk, SlowCC refers only to TCP(2/5, 1/8) or to TFRC.

Concerns about Slow Congestion Control (SlowCC):

- increase in the available bandwidth. (1) Less aggressive: SlowCC's limited ability to take advantage of an
- bandwidth? tion, with high packet drop rates, after a sharp decrease in the available (2) Less responsive: Is there an extended period of transient conges-
- (3) Fairness with TCP in a changing environment:
- Long-term fairness with TCP?
- Transient fairness with TCP?
- Fairness to competing TCP web mice?

Aggressiveness: SlowCC's limited ability to take advantage of increases in the available bandwidth

- Assume that the bandwidth available to a flow is doubled.
- For TCP(a,b), the sending rate is increased by:
- $-\ a/R$ packets/sec each RTT,
- $-\ a/R^2$ packets/sec each second.
- λ pkts/sec, it takes $\lambda R^2/a$ seconds to double its sending rate Therefore, for TCP(a,b) in congestion avoidance with a sending rate of
- queue management mechanisms at the routers This "cost" of SlowCC cannot be improved by standard scheduling or

Responsiveness: SlowCC's slow decrease in response to congestion

- its sending rate by a multiplicative factor (1-b) each RTT. ullet In mild but persistent congestion (e.g., with ECN), TCP(a, b) decreases
- ack-clocking and retransmit timeouts. ullet In severe congestion, TCP(a, b) decreases quickly, as a result of both
- by the method for estimating the loss event rate For equation-based congestion control, the decrease rate is determined
- rate is determined by the number of loss intervals in the average (8) For TFRC, which averages over a number of loss intervals, the decrease
- nant mechanism determining the decrease rate. For heavy congestion, TFRC's "ack-clocking-emulation" is the domi-

Next: fairness results

- Long-term fairness with TCP in a changing environment?
- Transient fairness with TCP in a changing environment?
- Fairness to competing TCP web mice in a changing environment?

(that is, TCP(2/5, 1/8) or TFRC) in the current Internet. Summary: We could find no fairness reasons for not deploying SlowCC

Normalized Bandwidth

SlowCC's long-term fairness with TCP in changing environments:

Simulations of TCP competing with TFRC.

Normalized Bandwidth

SlowCC's long-term fairness with TCP in changing environments:

Simulations of TCP competing with TCP(2/5, 1/8).

Transient fairness with TCP in a changing environment:

- more than its share of the available bandwidth, when competing with TFRC or TCP(2/5, 1/8). After a sudden doubling in the available bandwidth, TCP initially gets
- fairness is fairly prompt. When the available bandwidth returns to its initial value, the return to

Fairness to competing TCP web mice in a changing environment: Results from current simulations

- web mice competing with TCP. TCP web mice competing with TFRC or TCP(2/5, 1/8) do no worse than
- quickly achieve their share of the link bandwidth. TCP flows starting up against an existing TFRC or TCP(2/5, 1/8) flow

Related work in progress:

- with a loss event rate measured over 256 loss intervals instead of 8? ullet What about *very* slow congestion control, e.g., TCP(a, 1/256), or TFRC
- advantage of newly-available bandwidth. costs in terms of transient fairness, and in terms of slowness in taking These *very* slow congestion control mechanisms have significant